M1. (a) increases
increases
(b) $23(\mathrm{~m})$
accept 43 circled for 1 mark
accept $9+14$ for 1 mark
(c) (i) all points correctly plotted
all to $\pm 1 / 2$ small square one error = $\mathbf{1}$ mark two or more errors = 0 marks
line of best fit
(ii) correct value from their graph ($\pm 1 / 2$ small square)
(d) (i) 70
$1 / 2 \times 35 \times 4$ gains 2 marks
attempt to estimate area under the graph for 1 mark
(ii) line from $(0.6,35)$
sloping downwards with a less steep line than the first line
cutting time axis at time $>4.6 \mathrm{~s}$
accept cutting x-axis at 6
(e) (i) 42000
1200×35 gains 1 mark
kgm / s
Ns
(ii) $10500(\mathrm{~N})$

42000 / 4 gains 1 mark
alternatively:
$a=35 / 4=8.75 \mathrm{~m} / \mathrm{s}^{2}$
$F=1200 \times 8.75$

M2. (a) (i) as one goes up so does the other
or (directly) proportional
accept change by the same ratio
(ii) steeper straight line through the origin judge by eye
(iii) Yes with reason
eg data would have been checked / repeated accept produced by a reliable/ official/ government source do not accept it needs to be reliable
or No with reason
eg does not apply to all conditions / cars / drivers
or are only average values
or Maybe with a suitable reason
eg cannot tell due to insufficient information
(b) (i) stopping distance $=$ thinking distance + braking distance
(ii) any two from:
factors must be to do with increasing braking distance

- smooth road / loose surface
- rain / snow / ice
accept wet road/ petrol spills
do not accept condition of road unless suitably qualified
- badly maintained brakes
accept worn brakes
accept bad/ worn/ rusty brakes
do not accept old brakes

- worn tyres
 accept bald tyres accept lack of grip on tyres do not accept old tyres
 - downhill slope/gradient
 - heavily loaded car

M3. (a) A constant speed / velocity

$$
\begin{aligned}
& \text { accept steady pace } \\
& \text { do not accept terminal velocity } \\
& \text { do not accept stationary }
\end{aligned}
$$

B acceleration
accept speeding up

C deceleration
accept slowing down
accept accelerating backwards
accept accelerating in reverse do not accept decelerating backwards
(b) (i) the distance the car travels under the braking force accept braking distance
(ii) speed/velocity/momentum
(c) (i) $5000(\mathrm{~N})$ to the left both required accept 5000(N) with the direction indicated by an arrow drawn pointing to the left accept 5000(N) in the opposite direction to the force of the car (on the barrier) accept 5000(N) towards the car
(ii) to measure/detect forces exerted (on dummy / driver during the collision)
(iii) 4
allow 1 mark for showing a triangle drawn on the straight part of the graph
or correct use of two pairs of coordinates
do not accept mps^{2}
[10]

M4. (a) (i) gravitational potential (energy)
(ii) kinetic (energy)
(b) (i) slope or gradient
(ii) area (under graph) do not accept region
(iii) starts at same y-intercept
steeper slope than original and cuts time axis before original
the entire line must be below the given line
allow curve
(c) (i) 31
and
31
correct answers to 2 significant figures gains $\mathbf{3}$ marks even if no working shown
both values to more than 2 significant figures gains 2 marks:
30.952......
30.769....

65/2.1 and / or
80/2.6 gains 1 mark
if incorrect answers given but if both are to 2 significant figures allow 1 mark
(ii) student 1 incorrect because $80 \neq 65$

student 2 correct because average velocities similar ecf from (c)(i)

student 3 incorrect because times are different

M5.
(a) gravitational / gravity / weight
do not accept gravitational potential
(b) accelerating
accept speed / velocity increases
the distance between the drops increases
but the time between the drops is the same
accept the time between drops is (always) 5 seconds accept the drops fall at the same rate
(c) (i) any one from:

- speed / velocity
- (condition of) brakes / road surface / tyres
- weather (conditions)
accept specific examples, eg wet / icy roads accept mass / weight of car friction is insufficient reference to any factor affecting thinking distance negates this answer
(ii) 75000
allow 1 mark for correct substitution, ie 3000×25 provided no subsequent step shown
or allow 1 mark for an answer 750r allow 2 marks for 75 k(+ incorrect unit), eg 75 kN
joules / J
do not accept j
an answer 75 kJ gains 3 marks
for full marks the unit and numerical answer must be consistent

